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A circular cylindrical shell is considered to have a flat bottom at one 

end where a system of uniformly distributed supersonic sources is located. 

The other end of the shell is open and through it flows a uniform super- 

sonic stream of an ideal gas originating at the bottom. On the assumption 
that the shell performs small harmonic oscillations in a certain plane, 

the dynamic interaction between the gas and the shell walls is invest- 

igated. The gas compressibility leads to the appearance of nonstationary 
forces whose role in the general scheme depends upon the Strouhal number; 

in other words, the principal vector of the gas-dynamic forces manifests 
itself during the shell oscillation as displacement and rotation relative 
to the longitudinal axis. 

1, Formulation of the problem. The following notation is intro- 
duced: S 
the she1 i 

= area of the shell bottom; S, = area of the side surface of 
; R, = shell radius; II = length of the generator; Q = volume of 

gas inside the shell; c = displacement velocity of the gas; p0 = mass 
density of the undisturbed gas, and 

dr. 
P’ = dt = p&S = pocnR,2 I i 

the mass efflux per second, 

‘Ihe pressure in the surrounding medium is taken equal to the pressure 
in the gas stream. 

For describing the motion of the gas we introduce an “associatedn co- 
ordinate system Ony z with an origin at the center of the circle S,, 
lhe Ox-axis parallel to S,, the Oy-axis lying in the plane of the dis- 
turbed motion; and corresponding to this an absolute coordinate system 
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O*x*y*z* which coincides with the Oxyz system in the absence of any dis- 

turbance.Subsequently,by an undisturbed motion we mean either a state 

of rest or motion of the O*x*y*z* coordinate system such that the inertia 

forces in its field are neglected when considering a disturbance in the 

gas. 'lhe motion of Oxyz relative to O*x*y*z* will be characterized by the 

velocity vector u of the point 0 and by an angular velocity o, supposed 

to be a small quantity of the first order: 

. 
u = 2212, 0 = oi, (1.1) 

where i, and i, are unit vectors in the O*y*z* coordinate system. 

Quantities of the second and higher orders are neglected. 'lhe shell 

motion in the 0*x'-direction due to the disturbance is of minor interest 

and so it will be assumed that ux I 0. 

In order to construct the velocity field the following assumptions are 

made: 

(1) the components of the velocity vector of the disturbance at any 

point in the region Q are small compared with c; 

(2) the gas flow is a potential flow. 

Consider the absolute flow of the gas in the associated coordinate 

system, i.e. fix attention on the Oxyz system at the instant when it co- 

incides with the O*x*y*z* system during the disturbed motion. Then the 

linearized equation for the velocity potential 0 may be written in the 

following well-known form 

_(M2_1)~+~+~_~~_~~=0 (1.2) 

where a is the velocity of sound, M= c/a > 1 is a certain constant, and 
the time derivatives are calculated in the O*x*y*z* coordinate system. 

For the formulation of the boundary conditions we assume that the gas 

particles close to S, move with S, and rotate about Oz-axis as a solid 

body during the displacement and rotation of the bottom S,. Normal com- 

ponents of gas velocity must be created on the surface S,. Ry virtue of 

the supersonic character of the flow, this cylindrical surface may be 

considered as semi-infinite, so that any additional condition at the open 

end is unnecessary. 

Thus, at the instant when Oxyz coincides with O*x*y*z*, 

g = (u, s) + (R x s,(o), ~=(RxY,o) on S, 

$f- = (u, V) + (R x Y, 0) on s2 (1.3) 

Here u is a unit vector normal to Q, and s is a unit vector in any 
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direction of the S, plane. For harmonic oscillations, 

u(t) = U&f, o(t) = ooeiof 

2. Determination of the velocity potential ._ 

one may write 

(1.4) 

of the disturbed 
gas flow. We seek the velocity potential in the form of a sum of terms 
corresponding to an incompressible fluid flow inside an infinite cylinder 
S 2, and an infinite series expressing the effect of a wave system arising 
during the disturbed motion: 

where y and xy are harmonic functions satisfying the boundary conditions 
(1.3) and S,, and where ld;,(n = 1, 2, . ..) are eigen functions of the 
Helmholtz equation 

(2.2) 

In the region S representing a cross-section of Q, the relation 

q&/av = 0 (2.3) 

is determined frcnn the boundary condition on the contour C which bounds 
S. 

3ecause of the circular region under consideration, we introduce the 
following expression for the functions $n in (2.1): 

+n = JI K,,R I HoI 
JIG,) cos 8, Ic, + (n = 1, 2,...) (2.4 

0 

where J, is the Bessel function of the first kind and first order, 8 is 
the polar angle measured from gl, R is the radius and [n is a root of the 
equation 

Jn’ (c;) = 0 (2.5) 

Substitution of expression (2.1) into equation (1.2),on the assumption 
that the series in 42.1) is differentiable term by term, gives the follow- 
ing differential equation and initial conditions for the function 
r,(x, t): ._ 

(2.6) 

1 a2(M2- 1)-g-& a2rn+2c a& + + '2 -+- dk,2ra] ii)n -+ y (u- -j- 2~0 + XU. ) = 0 

", a+,@, q 
rT@,q=o, z axat 

=---22yo for x=0 (2.7) 
m-1 

after recalling condition (2.1) and neglecting an arbitrary function of 
the coordinates. 
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By use of the substitution r,(x, t) = [,(r)eio’ and expansion of the 
function y = R cos 8 in a generalized Fourier series of G,, functions, 

xn2 .= 
-I?,* (En2 - 1) 

z,* ) (2.8) 

equations (2.6) and (2.7) may be brought into the following equivalent 
system of ordinary differential equations and initial conditions for the 
<,(x1 functions 

(2.9) 

a2 (_bR’ -1) 2& i + 2ics, 2 + (3,2 _ 52) i-, = _ $j [ia, + (ix f -$- @o)] 

where 

C,(O) z=Y 0, 6,’ (0) = 2z (n = 1, 2 ,... ) (2.10) 

5,? = 
E,W 

lY,‘a? zz tl” 
0 

(2.11) 

A solution of (2.9) which satisfies (2.10) may be written in the form 

where 

(2.13) 

(A42 - 1) (a4 + 20,4 1 a%,*) + 2&,2 
- 

JO; + d 

s,in 6 I/an2 _i- 9x \ 
J 

Ml= uo, czz = oo, 6= I 
a (&I*-1) ’ Pn* = 0, 2(M2- 1) 

3. Calculation of the principal vector and principal moment 
of the system of gas-dynamic forces. The principal vector P and 
the principal moment M,of the system of gas-dynamic forces relative 
to the point 0 are most simply obtained by employing a function character- 
istic of the disturbed pressure and by taking into account an additional 
change in motion and kinetic moment resulting from efflux of gas from the 
sources on the surface S1: 
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where 

P = \\ GpvdS + P@‘, MO = \j 6p (R x v) dS f MO(‘) (3.1) 
SISS, s;+s* 

pm = - C[l. , M,,@) == c2 l (R x v) GpdS 
SI 

(3.2) 

& 

and R is the radius vector of a point on the surfaces S, + S,. ‘Ihe vari- 
ations of pressure Sp and of density 6p may be expressed in the associated 
coordinates. The Lagrange-Cauchy integral in the movable Oxyz system has 
the form 

aa, va2 
at ’ 2 

Va.V[ -+ s dP ---- - = % (4 
P 

where va is the absolute velocity of the gas particles, vI the transfer 
velocity, and x(t) an arbitrary function of time. 

In the case under consideration v,=c+V(D, vz=u+wxR, ; 
therefore the expression for 6p takes on the following form after neglect- 
ing the nonessential functions of time 

zp = - po (ag + c ag + cyoj (3.3) 

where p0 is the mass density of the undisturbed gas. The expression for 
the variation 6p in density to the same degree of accuracy has the form 

(3.4), 

By virtue of the boundary condition (1.3) on the surface S, 

p. aQ 6p=--7&- 

Ry substitution of 6p from (3.3) into formulas (3.1) and integrating 
over the surface S, + S,, in the second case by parts, we get 

P= - PO [ ss 
$vdS+ywagvdS 

D 
SI+& 

f ho) + gvrls] - C/J.. 

MO=-po[\\ ~(Rxv~~S~~rS~.(R~v)dS_- 
s,+sz s, 

(3 5) 

- \\Q)(c x v)dStc+(R x v)dS+iVf2\\a;(R x v)dS] 
sr S2 51 

A further substitution of Q, from (2.1) into (3.5) yields 
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Here 

K= p(u $ o x Rc) == p, 
! 
u $-G o i, 

where p is the mass of gas filling the volume Q, R, is the radius vector 

to the center of the exit section, R 
of inertia of the gaseous mass Q 

c is the radius vector to the center 

p = ~Ro2hpo, R, = hi,, R, = -& i, 

The following formulas were used in obtaining expressions (3.6) 

(3.8) 

(3.9) 

We introduce the operators 

and pass over to the scalar form of the equations (3.6). Substitution of 

the corresponding expression in (2.4) for the functions ~h,,and recalling 

formulas (2.8), (2.11), (2.12) and (l.4), equation (3.6) gives after some 

squaring 

P, = 2;rp,R,*ei"t g & i Q;Qnl gtk) _i_ ~!q1(0:+1!71 
n=1 n 

(3.11) 
k=1 

MO, = 

Returning to the functions u(t) and w(t) of equations (1.4) and intro- 
ducing the notation 

i (d-t_ T-c/2) 
$+=_2!- 

0 (3.12) 

for small rotations of the 0zy.z system relative to the O*x*y*z* system, 

formulas (3.11) may be given in the following form: 
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where 

(i,k =I,.% 

The expressions for plk and A k 

substitution of [,,(x) and [,,kf 

(k = 1, 2) obtained from (3.14), after 

f rom (2.13) and squaring,reduce to 

p110) = 2 f-h.{[plP (0) - Qll@) (4lW~ (3) - (3.15) 

n=1 

- lPll@) (0) + QlP (a)1 S2@) (0) + g P12@) (3)) 

Ua)= ui pn {-[P II(n) (a)- Q2p) (c)]C1@) (s) + [PII@) (9) + 
h=l 

+ QlP (O)lCP) (0) - 2Qll@) (4) 

1112 ta) = fj I430 {[P12'"'(0) + QJn) (a)]Cl(") (z)- 
?a=1 

- [P# (43?12'" (41 C2tn) (0) - 2 
I 
Q12Cn) (5) -m2&$j 

h,, (0) = 0 5 ~nRp{[P12(n) (u) $- QIJ@ (q]qn) (G)- [P12(n)(3)- 
VI=1 

- Q#) (o)] sp (s)} 
Here 

P# (0) = - 
M [iM2-1) (in4 +c,"+ 2)+x,‘] 

S&2 (I- C,“,” J/f/M” = 1 + in2 

QlP (0) = 
(612 - I)(&4 - tn* + 4) + 2 (1 + t;,“) 

in2 (1 - cny 

( 
c, zzc 0 \ 

%I,’ 

It is evident from (3.15) and (3.16) that effects connected with the 

nonstationary process are nonessential, if the value of rl* is negligibly 



is satisfied, where C$~ = f,8442, 

Supposing, for e~~~~e, that ~~~~ 1O”-3 set, we obtain in this case 
fur the condition of ~~~~cabil~~y of the statiunasy h~othes~s 

Noticeable deviations from this must be observed only for forced 
oscillations with frequencies of the order of hundreds of cycles per set, 
In other words, a su~er~~~c gas stream flowing ~b~o~gh a ~~l~~d~~~~l 
,channeJ, may be co~s~de~d as ~~so~ute~y stiff* in the ~~~s~e~se direct- 
iosl far a wide raffe of ~t~u~al ~~~~~s* By passing 03 the ~~rn~~~~g case 
of 0 -8 0 in (3.141, expressions 
applic~~~i~y of the stationary 
s, * 

are obtained which indicate the ran&z of 
h~uthesis for the effect of the bottom 


